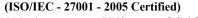


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter-2018

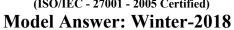
Subject: Mechanics of Structure


Sub. Code: 22303

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1		Attempt any <u>FIVE</u> of the following:		(10)
	(a)	Giving expression, define shear modulus.		
	Ans.	Shear modulus is defined as when a body is loaded within elastic limit		
	111100	the ratio of shear stress to shear strain is constant.	1	
		Chart Stross		2
		Shear Modulus (G) = $\frac{\text{Shear Stress}}{\text{Shear Strain}}$ (N/mm ²)	1	2
	(b)			
	Ans.	Define resilience and Proof resilience.		
		Resilience: Resilience is the ability of material to absorb energy when	1	2
		it is deformed elastically and release that energy upon unloading.		2
		Proof Resilience: Proof resilience is defined as the maximum energy	1	
		that can be absorbed within elastic limit without creating permanent	1	
		deformation.		
	(c)	Define volumetric strain. Also give the relation between lateral		
	Ans.	strain to and Poisson's ratio.		
		Volumetric strain: Volumetric strain is defined as the ratio of change in volume to original volume.	1	
		$ev = \frac{\delta v}{V}$ Where: $\delta v = \text{Change in volume}$, $V = \text{Original volume}$		2
		Relation between lateral strain and linear strain: Lateral Strain = μ×LinerStrain		
		Where, μ is Poission's ratio.	1	
		OUR CENTERS:		


Sub. Code: 22303

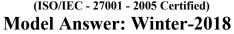
Model Answer: Winter-2018 Subject: Mechanics of Structure

J		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	(d)	For a certain material, the modulus of elasticity is 200 N/mm ² .		
	Ans.	If Poisson's ratio is 0.35, calculate Bulk modulus. Data: E=200 N/mm ² , Poisson's ratio=0.35 $E = 3K(1-2\mu)$ $200 = 3K(1-2\times0.35)$	1	2
		$K = 222.22 \text{N/mm}^2$	1	
	(e)	Determine maximum shear force and maximum bending moment for a cantilever having 4 m span carrying udl of intensity 25 kN/m.		
	Ans.	i) Maximum Shear Force = $w \times l = 25 \times 4 = 100kN$	1	
		ii) Maximum bending Moment = $\frac{\text{wl}^2}{2} = \frac{25 \times 4^2}{2} = 200 \text{kN-m}$	1	2
	(f)	Give the expression for maximum bending stress with meaning of each term.		
	Ans.	Maximum bending stress(σ_b)= $\frac{M}{I} \times Y$	1	2
		Where, M= Maximum Bending Moment (kN.m) or (N.mm) I = Moment of Inertia (mm ⁴) Y= Distance of neutral axis from top or bottom (mm).	1	2
	(g) Ans.	Along with expression, define slenderness ration. Slenderness Ratio: Slenderness ratio is defined as the ratio of effective length of column to its minimum radius of gyration. Slenderness Ratio (λ) = $\frac{\text{Effective Length}}{\text{Least radius of Gyration}} = \frac{\text{Le}}{K_{\text{min}}}$	1	2
		OUR CENTERS:	1	

Sub. Code: 22303	
------------------	--

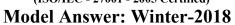
Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	~~~	Attempt any THREE of the following:		(12)
		5		, ,
	(a)	Along with the expression define radius of gyration and sectional		
	A	modulus.		
	Ans.	Radius of gyration (K): The radius of gyration of a given area about	1	
		any axis is the distance from the given axis at which the area is	•	
		assumed to be concentrated without changing the MI about the given		
		axis.		
		$K = \sqrt{\frac{I}{A}}$	1	
		, , , - -		
		Where, I = Moment of Inertia (mm ⁴)		4
		A = Cross Sectional Area (mm²)		
		K = Radius of Gyration. (mm)	1	
		Sectional Modulus (Z): It is the ratio of moment of inertia to the	1	
		distance of extreme fiber from neutral axis.		
		$Z = \frac{I}{Y}$	1	
		Where, Z= Section Modulus (mm ³)		
		I = Moment of Inertia (mm ⁴)		
		Y= Distance of neutral axis from top or bottom (mm)		
	(b)	For a circular lamina of diameter 100mm, calculate the moment		
		of inertia and radius of gyration about any tangent.		
	Ans.	Data: d = 100mm		
		Calculate: i) M.I. about tangent:		
		, G \		
		×x		
		$h = r = \frac{d}{2}$		
		A B		
		σ		
		$I_{AB} = \frac{\pi}{64} d^4 + Ah^2$	1	
		$I_{AB} = \frac{\pi}{64} (100)^4 + \pi (50)^2 \times (50)^2$		
		$I_{AB} = 24543692.61 \text{ mm}^4$		
		AD	1	



Subject: Mechanics of Structure

Subjec	gett: Mechanics of Structure				
Que. No.	Sub. Que.	Model Answer	Marks	Total Marks	
Q.2	(b)	ii) Radius of gyration about tangent: $K_{AB} = \sqrt{\frac{I_{AB}}{A}}$	1	4	
		$K_{AB} = \sqrt{\frac{24543692.61}{7853.982}} = \sqrt{3125} = 55.90$ mm	1		
	(c)	Calculate the moment of inertia for an inverted T- Section about its horizontal centroidal axis. Take the size of flange 100 mm × 3 mm and vertical web 120mm X 30mm, overall depth =150mm			
	Ans.	Find: I _{xx} =?			
		$\bar{X} = \frac{\text{Flange Width}}{2} = \frac{100}{2} = 50 \text{mm}$ $A_1 = 100 \times 30 = 3000 \text{ mm}^2 \text{ A}_2 = 120 \times 30 = 3600 \text{ mm}^2$ $Y_1 = \frac{30}{2} = 15 \text{mm} Y_2 = 30 + \frac{120}{2} = 90 \text{mm}$ $\bar{Y} = \frac{A_1 Y_1 + A_2 Y_2}{A_1 + A_2} = \frac{(3000 \times 15) + (3600 \times 90)}{3000 + 3600} = 55.91 \text{mm}$ To find I_{xx} , $I_{xx} = I_{xx1} + I_{xx2}$ $I_{xx} = (1G_1 + Ah^2)1 + (1G_1 + Ah^2)2$	1		

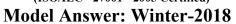
Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(c)	Here, $h_{1=} \bar{Y} - Y_{1} = 55.91 - 15 = 40.91 \text{mm}$ $h_{2=} Y_{2} - \bar{Y} = 90 - 55.91 = 34.09 \text{mm}$ $I_{xx} = \left(\frac{100 \times 30^{3}}{12} + 3000 \times 40.91^{2}\right)_{1} + \left(\frac{30 \times 120^{3}}{12} + 3600 \times 34.09^{2}\right)_{2}$ $I_{xx} = \left(5245884.3\right)_{1} + \left(8503661.16\right)_{2}$ $I_{xx} = 13.75 \times 10^{6} \text{mm}^{4}$	2	4
	(d) Ans.	Determine the moment of inertia of an angle section 100 mm×80mm×10 mm about vertical centroidal axis. Longer leg is vertical. Find: MI about vertical centroidal axis= I _{yy} =?		
		$A_{1}= 10\times90=900 \text{mm}^{2} A_{2}= 80\times10=800 \text{ mm}^{2}$ $X_{1}= 10/2=5 \text{mm} X_{2}= 80/2=40 \text{mm}$ $\bar{X}=\frac{A_{1}X_{1}+A_{2}X_{2}}{A_{1}+A_{2}}=\frac{(900\times5)+(800\times40)}{900+800}=21.47 \text{mm}$ To find $I_{YY}=(I_{YY})_{1}+(I_{YY})_{2}$ $I_{YY}=(I_{YY}-I_{YY})_{1}+(I_{YY}-I_{YY})_{2}$	1	


Model Answer: Winter-2018

Subject: Mechanics of Structure

DEGREE & DIPLOMA)
ENGINEERING	

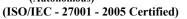
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		Model Answers Here, $h_2 = X_1 - \bar{X} = 40 \cdot 21.47 = 18.53 \text{mm}$ $h_1 = \bar{X} - X_2 = 21.47 \cdot 5 = 16.47 \text{mm}$ $I_{yy} = \left(\frac{90 \times 10^3}{12} + 900 \times 16.47^2\right)_1 + \left(\frac{10 \times 80^3}{12} + 800 \times 18.53^2\right)_2$ $I_{yy} = (251634.81)_1 + (701355.39)_2$ $I_{yy} = 9.53 \times 10^3 \text{mm}^4$	Marks 2	


Sub. Code: 22303

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3	(a)	Attempt any <u>THREE</u> of the following: A load of 6 kN is to be raised with the help of steel cable. Determine the minimum diameter of steel cable if stress is not to exceed 110 N/mm ² .		(12)
	Ans.	Data: $P = 6kN \sigma = 110N/mm^2$		
		Find: d _{min} =?	1	
		$\sigma_{\text{max}} = \frac{p_{\text{max}}}{A_{\text{min}}}$	1	
		$A_{\min} = \frac{p_{\max}}{\sigma_{\max}}$		
		$A_{\min} = \frac{6 \times 10^3}{110} = 54.54 mm^2$	1	4
		$\frac{\pi}{4} \times d^2_{\min} = 54.54mm^2$	1	
		$d^{2}_{\min} = 54.54 \times \frac{4}{\pi} = 69.442$ $d_{\min} = 8.33mm$	1	
	(b)	A Steel rod 15 m long is at a temperature of 15^{0} C. Find the free expansion of the length when the temperature is raised to 65^{0} C. Find the temperature stresses when the expansion of the rod is fully prevented. Take, $\alpha = 12 \times 10^{-6}$ per 0 C. $E = 2 \times 10^{5}$ N/mm ²		
	Ans.	Data: $L = 15m$ $t_1 = 15^{\circ}C$ $t_2 = 65^{\circ}C$ $\alpha = 12 \times 10^{-6} / {^{\circ}C}$ $E = 2 \times 10^{5} N / mm^2$		
		Find: $\delta L_t = ? \sigma_t = ?$		
		$t = t_1 - t_2 = 50^{\circ}C$		
		OUR CENTERS:		

Subject: Mechanics of Structure

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

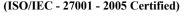


Que.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3	(b)	$\delta L_{t} = \alpha \times t \times L$	1	17101110
		$\delta L_t = 12 \times 10^{-6} \times 50 \times 15 \times 10^3$		
		$\delta L_t = 9mm$	1	4
		$\sigma_{t} = \alpha \times t \times E$	1	
		$\sigma_t = 12 \times 10^{-6} \times (65 - 15) \times 2 \times 10^5$	1	
		$\sigma_t = 120N/mm^2$	1	
	(c)	A Steel bar is 900mm long; its two ends are 40mm and 30mm in diameter and the length of each part of rod is 200mm. The middle portion of the bar is 15 mm in diameter and 500 mm long. If the bar is subjected to an axial tensile load of 15 kN, find its total		
	Ans.	extension. Assume: $E_{steel} = 2 \times 10^5 \ N/mm^2$ Find: $\delta_L = ?$		
		15 kN 15 kN $\delta L = \delta L_1 + \delta L_2 + \delta L_3$		
		$\delta L = \left(\frac{PL}{AE}\right)_1 + \left(\frac{PL}{AE}\right)_2 + \left(\frac{PL}{AE}\right)_3$	1	
		$\delta L = \frac{P}{E} \left(\frac{L_1}{A_1} + \frac{L_2}{A_2} + \frac{L_3}{A_3} \right)$		
		$\delta L = \frac{P}{E\left(\frac{\pi}{4}\right)} \left(\frac{L_1}{d_1^2} + \frac{L_2}{d_2^2} + \frac{L_3}{d_3^2}\right)$	1	4
		$\delta L = \frac{15 \times 10^3}{2 \times 10^5 \left(\frac{\pi}{4}\right)} \left(\frac{200}{40^2} + \frac{500}{15^2} + \frac{200}{30^2}\right)$	1	
		$\delta L = 0.245 \text{mm}$	1	
		OUR CENTERS:		

Subject: Mechanics of Structure

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter-2018 Sub. Code: 22303



Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3	(d)	A R.C.C. column is 300 mm X 300 mm in section. It is provided with 8 bars of 20 mm diameter. Determine the stresses induced in concrete and steel bars, if it carries a load of 180 kN. Take $E_{s=} 210 GPa$, $E_{c}= 14 GPa$		
	Ans.	Data: P= 180kN $E_s = 210Gpa = 210 \times 10^3 N / mm^2$		
		$E_c = 14GPa = 14 \times 10^3 N / mm^2 \text{Find: } \sigma_s = ? \sigma_c = ?$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$\frac{\sigma_s}{E_s} = \frac{\sigma_c}{E_c} \qquad \sigma_s = \frac{E_s}{E_c} \times \sigma_c$		
		$\sigma_s = \frac{210 \times 10^3}{14 \times 10^3} \times \sigma_c$ $\sigma_s = 15 \times \sigma_c$	1	
		$P = \sigma_s \times A_s + \sigma_c \times A_c$ $A = 300 \times 300 = 90000 mm^2$		
		$A_s = \frac{\pi}{4} \times 20^2 = 2513.27 mm^2$	1	
		$A_c = A - A_s = 87486.73mm^2$ $180 \times 10^3 = (15 \times \sigma_c \times 2513.27) + (\sigma_c \times 87486.73)$		4
		$180 \times 10^{3} = (37699.05 \times \sigma_{c}) + (\sigma_{c} \times 87486.73)$ $180 \times 10^{3} = (125185.78 \times \sigma_{c})$ $\sigma_{c} = \frac{180 \times 10^{3}}{125185.78} \sigma_{c} = 1.437 N / mm^{2}$	1	
		$\sigma_s = 15 \times \sigma_c$ $\sigma_s = 15 \times 1.437$		
		$\sigma_s = 21.555 N / mm^2$ OUR CENTERS	1	

Subject: Mechanics of Structure

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

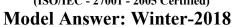
Sub. Code: 22303

Model Answer: Winter-2018

Que.	Sub.	Model Answer	Marks	Total
No.	Que.	Model Allswer	Marks	Marks
Q.4	(a)	Attempt any <u>THREE</u> of the following:		(12)
		For a given material, Young's modulus is 110GN/m ² and shear		
		modulus is 42 GN/m ² . Find the Bulk modulus and lateral		
		contraction of a round bar of 37.5 mm diameter and 2.4 m length		
		when stretched by 2.5 mm. when subjected to an axial load.		
	Ans.	Data- E= 110 GN/m ² = 110×10^3 N/mm ² G= 42 GN/m ² = 42×10^3 N/mm ²		
	1 11100	d= 37.5mm, L=2.4m=2400mm, δl=2.5mm		
		Find- K=?, \(\delta b=? \)		
		To Calculate Possion's ratio (μ):		
		$E = 2G(1+\mu)$		
		$110 \times 10^{3} = 2 \times 42 \times 10^{3} (1 + \mu)$		
		$\mu = 0.309$	1	
		To Calculate Bulk Modulus (K):		
		$E=3K(1-2\mu)$		
		$110 \times 10^3 = 3K(1-2 \times 0.309)$		
		$K=95.986\times10^3 \text{ N/mm}^2$	1	4
		To Calculate change in diameter(δd):		
		$\mu = \frac{Lateral\ Strain}{Lateral} = \left(\frac{e_L}{e_L}\right) = \frac{(\delta d/d)}{(\delta d/d)}$		
		$\mu = \frac{1}{\text{Linear Strain}} = \frac{1}{e} \left(\frac{\delta_L}{L} \right)$	1	
		$0.200 (\delta d/37.5)$		
		$0.309 = \frac{(\alpha t/37.3)}{(2.4/2400)}$		
		$\delta d = 0.012mm$	1	
		A cube of 100 mm size is subjected to a direct load of 50kN		
	(b)	(compressive) on all its faces. Find the change in volume if K=		
		`		
		1.3GPa and μ=0.30.		
	A	$C_{1}^{2} = V_{1} + V_{2} + V_{3} + V_{4} + V_{5} + $		
	Ans.	Given, K= 1.3 GPa = 1.3 X 10^3 N/mm ² , μ =0.30		
		Find- $\delta v = ?$		
		50kN		
		50 k N		
		50 kN′ - 100 →		
				l

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)


Sub. Code: 22303

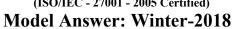
Model Answer: Winter-2018 Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
		To find E: $E=3K(1-2\mu)$ $E=3\times1.3\times10^{3}(1-2\times0.30)$ $E=1.56\times10^{3} \text{ N/mm}^{2}$ To find δv : $\sigma_{x}=\sigma_{y}=\sigma_{z}=-\frac{P_{x}}{A}$ $\sigma_{x}=\sigma_{y}=\sigma_{z}=-\frac{(50\times10^{3})}{100\times100}=-5N/mm^{2}$ $e_{v}=\frac{\sigma_{x}+\sigma_{y}+\sigma_{z}}{E}(1-2\mu)$ $e_{v}=\frac{-5\cdot5\cdot5}{1.56\times10^{3}}\times(1-2\times0.30)$ $e_{v}=-3.846\times10^{3}$ $\frac{\delta_{y}}{V}=-3.846\times10^{3}\times V$ $\delta_{v}=-3.846\times10^{3}\times V$ $\delta_{v}=-3.846\times10^{3}\times V$ $\delta_{v}=-3.846\times10^{3}\times V$ A beam ABCDA's supported at 'A' and 'D'. AB=BC=CD=2m. It is subjected to udl of 10 kN/m over AB and a point load of 20kN at 'C' Draw shear force and bending moment diagrams. 1) Reaction Calculation: $\Sigma Fy=0$ $R_{A}+R_{D}-(10\times2)-20=0$ $R_{A}+R_{D}-40=0$ $R_{A}+R_{D}-40=0$ $(10\times2\times1)+(20\times4)-(R_{D}\times6)=0$ $R_{D}=16.666kN$ From (i), $R_{A}+16.66=40$ $R_{A}=23.34kN$	1 1/2 1/2 1 1	



Subject: Mechanics of Structure

Que.	Sub.	Madal Assessas	Maril	Total
No.	Que.	Model Answer	Marks	Marks
Q.4	(c)	II) SF Calculation:		
		SF at $A_L = 0$		
		$A_R = +23.34 \text{kN}$		
		$B_L = +23 - (10 \times 2) = +3.34 \text{ kN}$		
		$B_R = +3.34 \text{ kN}$	1	
		$C_L = +3.34 \text{ kN}$		
		$C_R = +3.34-20 = -16.66 \text{ kN}$		
		$D_L = -16.66 \text{ kN}$		
		D_R = -16.66+16.66=0 kN		
		III) BM Calculation:		
		BM at $A=0$ and $D=0$		
		$B=+(23.34\times2)-(10\times2\times1)=26.68 \text{ kN.m}$	1	
		$C = +(23.34 \times 2) - (10 \times 2 \times 3) = 33.36 \text{ kN.m}$		
		20KN		
		10 KN/m		
		$A \sim B$ $C \sim D$		
		2m 2m 2m		
		RA BEAM RD		
		23.33		4
		⊕ 3·33 3·33 C D		
			1	
		A B Y 🕞		
		16.67 16.67		
		SFD (KN)		
		26.66 33.34		
		28.00		
		⊕		
			1	
		A B C D		
		BMD (KN-m)		
		BMD (KM-m)		



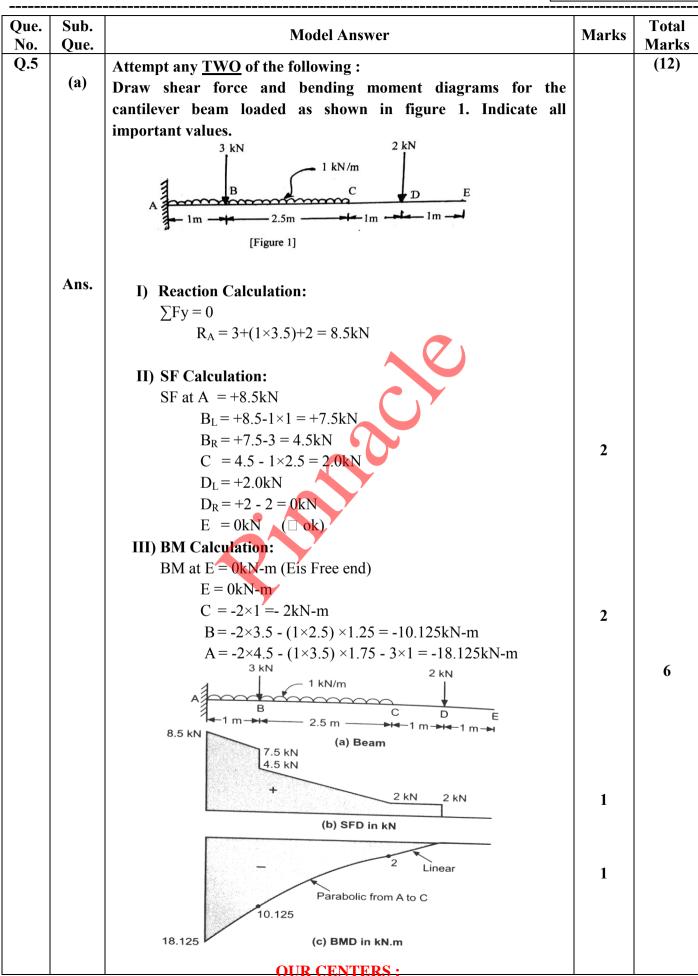
Sub. Code: 22303

Model Answer: Winter-2018

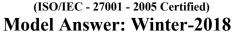
Que.	Sub.	Model Answer	Marks	Total Marks
No. Q.4	Que. (d)	A solid singular column is Am long with both and fined some		IVIALKS
Q.4	(u)	A solid circular column is 4m long with both ends fixed, carries a safe axial load 500kN. Using Euler's equation, calculate the		
		diameter of column. Take E=100kN/m ² and Factor of safety 2.5.		
		diameter of column. Take E-100kN/m and Factor of Safety 2.5.		
	Ans.	Data: L=4m P_{safe} =500kN E= 100kN/m ² = 100×10 ⁻³ N/mm ² F.O.S.=2.5		
		Find: D		
		$L_e = \frac{L}{2} = \frac{4 \times 10^3}{2} = 2000 \text{mm}$		
		$P_{E} = P_{safe} \times FOS = 500 \times 10^{3} \times 2.5 = 1.25 \times 10^{6} N$	1	
		$P_{E} = \frac{\pi^{2} E \operatorname{I} \min}{\left(L_{e}\right)^{2}}$	1	
		$1.25 \times 10^{6} = \frac{\pi^{2} \times 100 \times 10^{-3} \times \left(\frac{\pi}{64} \times D^{4}\right)}{\left(2000\right)^{2}}$	1	4
		$D^{4} = 1.03 \times 10^{14}$ $D = 3187.315 \text{mm}$	1	
		D = 3107.31311111	1	
		OUR CENTERS:		

Subject: Mechanics of Structure

Subject: 	ject: Mechanics of Structure		Sub. Code: 22	23U3
No.	Sub. Que.	Model Answers	Marks	Tota Mark
Q.4	(e) Ans.	Determine the safe load on column of 6m length, with both of fixed. The properties of section are: $A=1777\text{mm}^2,\ I_{xx}=1.16\times 10^7\text{mm}^4,\ Iyy=0.84\times 10^6\text{mm}^4,\ \sigma c=320\text{M}$ $\alpha=\frac{1}{7500}\ \text{Take, factor of safety}=4.\ \text{Use Rankine's formula.}$ $Data:\ L=6\text{m}=6000\text{mm},\ \text{Both ends are fixed.}$ $A=\ 1777\text{mm}^2,\ I_{xx}=\ 1.16\times 10^7\text{mm}^4,\ Iyy=\ 0.84\times 10^6\text{mm}^4,\ \sigma c=320\text{M}$ $\alpha=\frac{1}{7500},\ \text{FOS}=4$	1Pa,	
		Find: P _{safe} =? By using Rankine's Formula, $L_e = \frac{L}{2} = \frac{6 \times 10^3}{2} = 3000 \text{mm}$	1/2	
		$\left(\lambda\right)^{2} = \left(\frac{L_{e}}{K\min}\right)^{2} = \left(\frac{L_{e}}{\left(\sqrt{\frac{\text{Imin}}{A}}\right)}\right)^{2} = \left(\frac{(3000)^{2}}{0.84 \times 10^{6}}\right) = 19039.286$	1	
		$P_{R} = \frac{\sigma_{c}A}{1 + \alpha\lambda^{2}}$ $P_{R} = \frac{320 \times 1777}{1 + \frac{1}{7500} \times (19039.286)}$ $P_{R} = 160697.618N$	1	4
		$P_{\text{safe}} = \frac{P_R}{FOS} = \frac{160697.618}{4} = 40174.4N$ $P_{\text{safe}} = 40.174kN$	1/2	
		OUR CENTERS ·		

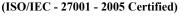

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)



Model Answer: Winter-2018

Sub. Code: 22303 Subject: Mechanics of Structure



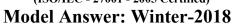
Subject: Mechanics of Structure

$\begin{array}{ c c c c }\hline Que. & Sub. \\ No. & Que. \\ \hline \hline Q.5 & (b) & Draw shear force and bending moment diagrams for the beam as shown in fig. 2. \\ \hline \\ Ans. & & & & & & & & & & \\ \hline & & & & & & & &$	Total
No. Que. Q.5 (b) Draw shear force and bending moment diagrams for the beam as shown in fig. 2. $A = \frac{100 \text{ kN}}{C} + \frac{40 \text{ kN.m}}{D} + \frac{100 \text{ kN}}{B} + 100 $	
shown in fig. 2. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Marks
Ans. I) Reaction Calculation: $\sum M_A = 0$ $R_B \times 6 + 40 = 100 \times 1$ $R_A = 0$ $R_A + R_B = 100 \text{kN}$ $R_A + 10 = 100 \text{kN}$	
Ans. I) Reaction Calculation: $\sum M_A = 0$ $R_B \times 6 + 40 = 100 \times 1$ $R_A + R_B = 100 \text{kN}$ $R_A + 10 = 100 \text{kN}$	
Ans. I) Reaction Calculation: $\sum M_A = 0$ $R_B \times 6 + 40 = 100 \times 1$ $R_A + R_B = 100 \text{kN}$ $R_A + 10 = 100 \text{kN}$	
Ans. I) Reaction Calculation: $\sum M_A = 0$ $R_B \times 6 + 40 = 100 \times 1$ $R_A + R_B = 100 \text{kN}$ $R_A + 10 = 100 \text{kN}$	
Ans. I) Reaction Calculation: $\sum M_A = 0$ $R_B \times 6 + 40 = 100 \times 1 \Box R_B = 10 \text{kN}$ $\sum Fy = 0$ $R_A + R_B = 100 \text{kN}$ $R_A + 10 = 100 \text{kN}$ $\Box R_A = 90 \text{kN}$ II) SF Calculation: $C_L = +90 \text{kN}$	
Ans. I) Reaction Calculation: $\sum M_A = 0$ $R_B \times 6 + 40 = 100 \times 1 \Box R_B = 10 \text{kN}$ $\sum Fy = 0$ $R_A + R_B = 100 \text{kN}$ $R_A + 10 = 100 \text{kN}$ $\Box R_A \neq 90 \text{kN}$ II) SF Calculation: $C_L = +90 \text{kN}$	
Ans. I) Reaction Calculation: $\sum M_A = 0$ $R_B \times 6 + 40 = 100 \times 1 \Box R_B = 10 \text{kN}$ $\sum Fy = 0$ $R_A + R_B = 100 \text{kN}$ $R_A + 10 = 100 \text{kN}$ $\Box R_A = 90 \text{kN}$ II) SF Calculation: $C_L = +90 \text{kN}$ $C_L = +90 \text{kN}$	
$\sum M_{A} = 0$ $R_{B} \times 6 + 40 = 100 \times 1 \Box R_{B} = 10 \text{kN}$ $\sum Fy = 0$ $R_{A} + R_{B} = 100 \text{kN}$ $R_{A} + 10 = 100 \text{kN}$ $\Box R_{A} = 90 \text{kN}$ $C_{L} = +90 \text{kN}$ $C_{L} = +90 \text{kN}$	
$\sum M_{A} = 0$ $R_{B} \times 6 + 40 = 100 \times 1 \Box R_{B} = 10 \text{kN}$ $\sum Fy = 0$ $R_{A} + R_{B} = 100 \text{kN}$ $R_{A} + 10 = 100 \text{kN}$ $\Box R_{A} = 90 \text{kN}$ $C_{L} = +90 \text{kN}$ $C_{L} = +90 \text{kN}$	
$R_{B} \times 6 + 40 = 100 \times 1 \qquad \Box \ R_{B} = 10 k N$ $\sum Fy = 0$ $R_{A} + R_{B} = 100 k N$ $R_{A} + 10 = 100 k N \qquad \Box \ R_{A} = 90 k N$ $SF \ at \ A = +90 k N$ $C_{L} = +90 k N$	
$\sum Fy = 0$ $R_A + R_B = 100kN$ $R_A + 10 = 100kN$ $R_A = 90kN$ $SF \text{ at } A = +90kN$ $C_L = +90kN$	
$R_A + R_B = 100kN$ $R_A + 10 = 100kN$ $R_A = 90kN$ $SF \text{ at } A = +90kN$ $C_L = +90kN$	
$R_A+10=100kN \qquad \square \ R_A=90kN$ II) SF Calculation: $SF \ at \ A=+90kN \\ C_L=+90kN$	
II) SF Calculation: SF at $A = +90kN$ $C_L = +90kN$	
$SF \text{ at } A = +90kN$ $C_L = +90kN$ 1	
$SF \text{ at } A = +90kN$ $C_L = +90kN$ 1	
$C_L = +90 \text{kN}$	
$B_L = -10kN$	
$B = -10 + 10 = 0 \text{kN}$ (\Box ok)	
III) BM Calculation.	
BM at A and $B = 0$ (Supports are simple)	
$C = 90 \times 1 = +90 \text{kN-m}$	
$D_L = +90 \times 3 - 100 \times 2 = +70 \text{kN-m}$	6
$D_R = +10 \times 3 = +30 \text{kN-m}$	
OR $D_R = +90 \times 3 - 100 \times 2 - 40 = +30 \text{kN-m}$	
100 kN 40 kN.m	
A B	
-1 m -1 -2 m -3 m	
RA (a) Beam	
90	
90 c D B	
A 10	
(b) SFD in kN	
70	
A state of the sta	
The state of the s	
A C D B	

Model Answer: Winter-2018

Subject: Mechanics of Structure Sub. Code: 22303

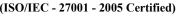
Sub. Que.	Model Answer	Marks	Total Marks
(c)	Draw shear force and bending moment diagram for an overhang beam loaded as shown in fig.3 10 kN/m A 1m 1m 1m Figure 3]		
Ans.			
	I) Reaction Calculation:	1	
	II) SF Calculation: SF at A = +18.75kN $B_L = +18.75 - (10 \times 4) = -21.25kN$ $B_R = -21.25 + 26.25 \neq +5kN$ $B = +5 - 5 = 0kN$ (\Box ok)	1	
	III) BM Calculation: BM at $A = 0$ (Support A is simple) $C = 0$ (Support C is free) $B = -5 \times 1 = -5 \text{kN-m}$	1	6
	IV) Maximum BM Calculation: SF at D = 0 $18.75X - 10 X = 0$ $\Box X = 1.875 \text{m}$ from support A BM_{max} at D = + $18.75 \times 1.875 - 10 \times 1.875 \times 0.9375$ $BM_{\text{max}} = + 17.578 \text{kN-m}$	1	
	Que. (c)	Que. Model Answer (c) Draw shear force and bending moment diagram for an overhang beam loaded as shown in fig.3 5 kN A 10 kN/m 1	Que. Model Answer Marks C (c) Draw shear force and bending moment diagram for an overhang beam loaded as shown in fig.3 10 kN/m 5 kN A



Model Answer: Winter-2018

Subject: Mechanics of Structure

Que.	Sub.	Model Answer	Marks	Total Marks
Que. No. Q.5	Sub. Que. (c)	Model Answer 10 kN/m	Marks	Total Marks
		OUR CENTERS:		



ENGINEERING

Sub.	Code:	22303	
------	-------	-------	--

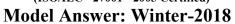
Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	(a) (i) Ans.	Attempt any <u>TWO</u> of the following: Attempt the following: Find the bending stress at a distance of 25 mm below top edge of rectangular beam section 80mm x 240 mm deep if maximum bending moment is 5 kN.m. Data:		(12)
		: b= 80mm, d= 240 mm B _{max} = 5 kN-m Calculate σ_b at 25 mm from top edge. $Y = \frac{D}{2} = \frac{240}{2} - 25 = 95mm$	1/2	
		$B_{\text{max}} = 5 \times 10^6 N - mm$ $I_{NA} = \frac{bd^3}{12} = \frac{80 \times 120^3}{12} = 11520000mm^4$	1 1/2	
	(ii)	$\sigma_b = \frac{M}{I} \times Y$ $\sigma_b = \frac{5 \times 10^6}{11520000} \times 95$ $\sigma_b = 41.233 N / mm^2$ A circular beam carries a maximum shear force of 10kN. Find the	1	
	Ans.	necessary diameter of the beam if maximum shear stress is limited to 1.5 N/mm ² . Data: $S = 10kN$, $q_{max} = 1.5 N/mm^2$ Calculate D=?	1	
		$q_{\text{max}} = \frac{4}{3}(q_{avg})$ $q_{\text{max}} = \frac{4}{3} \times \frac{S}{A}$ $q_{\text{max}} = \frac{4}{3} \times \frac{S}{\frac{S}{\pi d^2}}$	1	
		$ \frac{4}{1.5} = \frac{4}{3} \times \frac{10 \times 10^{3}}{\frac{\pi \times d^{2}}{4}} $ $ d^{2} = 11317.684 $ $ d = 106.384 \text{ mm} $	1	6
		OUR CENTERS:		

ENGINEERING

Sub. Code: 22303

Model Answer: Winter-2018 Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answer	Marks	Tota Mark
Q.6	ii)	$A = \frac{1}{2} \times \frac{\pi}{4} \times d^2 = \frac{\pi}{8} d^2$ $A = \frac{1}{2} \times \frac{\pi}{4} \times d^2 = \frac{\pi}{8} d^2$	1	
		$\overline{Y} = \frac{4R}{3\pi} = \frac{2d}{3\pi}$ $b = d$		
		$I = \frac{\pi}{64} d^4$		
		$q_{\text{max}} = \frac{SA\overline{Y}}{bI}$	1	
		$1.5 = \frac{10 \times 10^3 \times \frac{\pi}{8} d^2 \times \frac{2d}{3\pi}}{d \times \frac{\pi}{64} d^4}$		
		$d^{2} = 11317.684$ $d = 106.384 \text{ mm}$	1	
	(b)	A symmetrical I section 500mm deep is simply supported at enhaving span 5 m and udl 20kN/m over entire span. Size of flang are 250mmX20mm and web 10mm thick. Calculate the magnitu	ges	
		of maximum bending stress induced. Draw stress distributi diagram.		
	Ans.	w = 20 kN/m A		
		$M_{\text{max}} = \frac{wL^2}{8} = \frac{20 \times 5^2}{8} = 62.5 \text{kNm} = 62.5 \times 10^6 \text{Nmm}$	1	
		$I_{XX} = \left(\frac{BD^3 - bd^3}{12}\right) = \left(\frac{250 \times 500^3}{12} - \frac{240 \times 460^3}{12}\right) = 6.57 \times 10^8 \text{m}$	n ⁴ 1 ½	
		$y_c = y_t = \left(\frac{500}{2}\right) = 250mm$	1/2	6
		$\sigma_c = \sigma_c = \left(\frac{M}{I}\right) y_c = \left(\frac{62.5 \times 10^3}{657446666 \cdot .7}\right) \times 250 = 23.77 N / mm^2$	2	


Model Answer: Winter-2018

Sub. Code: 22303

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	(b)	23.77 N/mm² 20 mm Neutral Axis yt 250 mm A60 mm Section Bending stress distribution	1	
	(c)	A simply supported beam carries a udl of intensity 2.5kN/m over entire span of 5m. The cross section of beam is a T-section having the dimensions given below. Flange: 125mm x 25mm, Web; 175mm x 25mm, overall depth=200mm. Calculate the maximum shear stress for the section of the beam. Construct shear distribution diagram.		
	Ans.	Data: L=5m, W=2.5kN/m, Flange: 125mm x 25mm, Web; 175mm x 25mm, overall depth=200mm. $S = \frac{wL}{2} = \frac{2.5 \times 5}{2} = 6.25 \text{kN-m} = 6.25 \times 10^6 \text{ N-mm}$ $S = \frac{wL}{2} = \frac{2.5 \times 5}{2} = 6.25 \text{kN-m} = 6.25 \times 10^6 \text{ N-mm}$	1/2	
		$\bar{Y} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2}$ $\bar{Y} = \frac{(125 \times 25) \times 12.5 + (25 \times 175)(25 + \frac{175}{2})}{(125 \times 25) + (25 \times 175)}$ $\bar{Y} = \frac{(3125 \times 12.5) + (4375 \times 112.50)}{7500}$		
		$\bar{Y} = 70.83$ mm from top	1/2	
		OUR CENTERS:		

Su	b. Code: 2	22303	

No. Que. Q.6 (c) $I_{NA} = (I)_{Flange} + (I)_{Web}$ $I_{NA} = (I_G + ah^2)_{Flange} + (I_G + ah^2)_{Web}$ $I_{NA} = \left(\frac{bd^3}{12} + ah^2\right)_{Flange} + \left(\frac{bd^3}{12} + ah^2\right)_{Web}$	Iarks	Marks
$I_{NA} = (I)_{Flange} + (I)_{Web}$ $I_{NA} = (I_G + ah^2)_{Flange} + (I_G + ah^2)_{Web}$ $I_{NA} = \left(\frac{bd^3}{12} + ah^2\right)_{Flange} + \left(\frac{bd^3}{12} + ah^2\right)_{Web}$		Marks
$A\bar{Y} = (125 \times 25)(70.83 - 12.5) + [25 \times (70.83 - 25)] \times \left(\frac{70.83 - 25}{2}\right)$ $A\bar{Y} = (3125 \times 58.33) + (1145.75 \times 22.915)$ $A\bar{Y} = 208536.1 \text{ lmm}^3$ $q = \frac{SA\bar{Y}}{bI}$ $q_1 = \frac{6.25 \times 10^6 \times 3125 \times 58.33}{125 \times 29557291.75} = 308.352 \text{ N/mm}^2$ $q_2 = \frac{6.25 \times 10^6 \times 3125 \times 58.33}{25 \times 29557291.75} = 1541.762 \text{ N/mm}^2$ $q_{(max)} = \frac{6.25 \times 10^6 \times 208536.11}{25 \times 29557291.75} = 1763.83 \text{ N/mm}^2$	1 1/2 1/2 1/2 1 1	6